
J Comput Virol (2010) 6:65–75
DOI 10.1007/s11416-008-0088-y

EICAR 2008 EXTENDED VERSION

Simulating malware with MAlSim

Rafał Leszczyna · Igor Nai Fovino · Marcelo Masera

Received: 20 January 2008 / Revised: 26 May 2008 / Accepted: 8 June 2008 / Published online: 1 July 2008
© Springer-Verlag France 2008

Abstract This paper describes MAlSim—Mobile Agent
Malware Simulator—a mobile agent framework developed
to address one of the most important problems related to the
simulation of attacks against information systems, i.e. the
lack of adequate tools for reproducing behaviour of mali-
cious software (malware). The framework can be deployed
over the network of an arbitrary information system and it
aims at simulating behaviour of each instance of malware
independently. MAlSim Toolkit provides multiple classes
of agents and diverse behavioural and migration/replication
patterns (which, taken together, form malware templates),
to be used for implementation of various types of malware
(viruses, worms, malicious mobile code). The primary appli-
cation of MAlSim is to support security assessments of infor-
mation systems based on simulation of attacks against these
systems. In this context, the framework was successfully
applied to the studies on security of the information sys-
tem of a power plant. The case study proved the operability,
applicability and usefulness of the simulation framework and
it led to very interesting conclusions on the security of the
evaluated system.

1 Introduction

One of the approaches for security assessment of information
systems is based on simulation of attacks against these sys-

R. Leszczyna (B) · I. Nai Fovino · M. Masera
European Commission, Joint Research Centre,
Via Enrico Fermi 2749, 21020 Ispra (VA), Italy
e-mail: rafal.leszczyna@jrc.it

I. Nai Fovino
e-mail: igor.nai@jrc.it

M. Masera
e-mail: marcelo.masera@jrc.it

tems [4]. The experiments employ the methods and tools of
potential intruders and they are carried out from the position
of the intruders. The approach allows to identify any poten-
tial vulnerabilities that may result from improper system
configuration, known or unknown hardware or software
flaws, or operational weaknesses in business processes. It
leads to determination of feasibility of the attacks and their
impact on the information system, on the organisation which
uses it and on any other involved stakeholders [4].

Among the variety of attacks against information systems
which are at disposal of intruders (and thus must be taken into
account during the analyses)1 the significant part is formed
by the attacks based on malware, i.e. malicious software that
run on a computer and make the system behaving in a way
wanted by an attacker [36]. Malware attacks are the most
frequent in the Internet and they pose a serious threat against
information systems [34].

Malware can be categorised into the following families
[36,39]:

• Viruses—programs that recursively and explicitly copy
a possibly evolved version of themselves and require
human interaction to propagate.

• Worms—self-replicating programs autonomously (with-
out human interaction) spreading across a network.

• Malicious mobile code—lightweight Javascript,
VBScript, Java, or ActiveX programs that are downloaded
from a remote system and executed locally with minimal
or no user intervention.

• Backdoors—bypassing normal security controls to give
an attacker access to a computer system.

1 An approachable overview of computer attacks can be found in [1].
The updated information about system vulnerabilities is available at
[34].

123

66 R. Leszczyna et al.

• Trojan horses—disguising themselves as useful programs
while masking hidden malicious purpose.

• User-level RootKits—replacing or modifying executable
programs used by system administrators and users.

• Kernel-level RootKits—manipulating the kernel of
operating system.

• Combination malware—combining techniques of other
malware families.

More detailed information on malware an interested reader
can find in [39,12].

The studies on virus simulation tools span between:

• Educational simulators, i.e. programs demonstrating the
effects of virus infection [17]. This group of programs
include Virus Simulation Suite written in 1990 by Joe
Hirst, which is a collection of executables, that ‘simulate
the visual and aural effects of some of the PC viruses’
[20]. Another example is Virlab [11] from 1993, which
simulates the spread of DOS computer viruses, and pro-
vides a course on virus prevention. (As it can be noticed,
the programs are quite out of date, and today they would
rather serve just as a historical reference.)

• Anti-virus testing simulators, i.e. programs which are sup-
posed to simulate viral activity, in order to test anti-virus
programs without having to use real, potentially danger-
ous, viruses. Unfortunately, it seams that only one solu-
tion of this type was developed [17], namely Rosenthal
Virus Simulator [33]. The simulator is a set of programs
which provide ‘safe and sterile, controlled test suites of
sample virus programs’, developed for ‘evaluating anti-
virus security measures without harm or contamination
of the system’ [33]. Again the applicability of the suite is
limited since it was written ten years ago.

Concerning the simulation of worms, the prevalent
work was done on developing mathematical models of worm
propagation [35,38,9,44], which base on epidemiological
equations that describe spread of real-world diseases. The
empirical approaches concentrated mainly on single-node
worm spread simulators [26,25,41,31], which are dedicated
to run on one machine. Only few distributed worm simula-
tions were implemented [32,42,13]. However, in all of these
approaches, also the network over which the simulated worm
spreads, is simulated. Still there is a need for a simulation tool
allowing simulations of malware in an arbitrary, real, physi-
cal network of computers.

Also Trojan Simulator [29] has limited applicability. It was
developed for evaluating effectiveness of anti-Trojan soft-
ware, and as such fulfills its purpose. However from the point
of view of attack simulation, it lacks the behavioural part,
since the Trojan malicious activities (e.g. stealthy task exe-

cution which consumes processor time or sending packets
over network) are not simulated.

Thus it becomes evident that there are no compound
frameworks for simulation of malware which would support
the security assessments of information systems based on
simulation of attacks.

This paper describes MAlSim—a new framework
developed to fulfill this gap.

MAlSim— Mobile Agent Malware Simulator) is a
software toolkit which aims at simulation of various mali-
cious software in computer network of an arbitrary informa-
tion system. The framework aims at reflecting the behaviours
of various families of malware (worms, viruses, malicious
mobile code, etc.) and various species of malware belong-
ing to the same family (e.g. macro viruses, metamorphic
and polymorphic viruses, etc.). It can simulate well-known
malware (e.g. Code Red, Nimda, SQL Slammer) but it can
also simulate generic behaviours (file sharing propagation,
e-mail propagation) and non-existent configurations (which
supports the experiments aiming at predicting the system
behaviour in the face of new malware). MAlSim is a distrib-
uted simulator which simulates behaviour of each instance
of malware independently. This means that if the prototype
malware propagates over a network, making its copies, then
the MAlSim agent dedicated to simulate this malware, also
spreads across a network and creates new instances of itself.

Since the framework is based on the technology of mobile
agents, the description starts with a short overview of the
technology (Sect. 2). This section explains also why the par-
adigm of mobile agents was chosen for the development
of the simulator. The next section introduces JADE (Java
Agent DEvelopment Framework)—the agent platform for
which MAlSim is dedicated and which provides MAlSim
with mechanisms for implementing and controlling the life
cycle of simulation agents. The core description of the frame-
work starts in Sect. 4 where components of the MAlSim
toolkit are explained and the notion of malware templates is
brought in. The section describes also how experiments with
MAlSim are set up. Section 5 describes malware templates
in more detailed way, showing how the templates are cre-
ated and used. An exemplary template of the famous virus
Melissa is presented. The best way to understand how some-
thing works is to see it in action. Section 6 provides a live
example of applying MAlSim for security evaluation of an
information system of a power plant. Finally, Sect. 7 sum-
marises the description of the framework.

2 Mobile agents

Mobile agents are the software agents able to roam network
freely, to spontaneously relocate themselves from one device
to another.

123

Simulating malware with MAlSim 67

Software agents are software components, that are [2]:

• Autonomous—able to exercise control over their own
actions.

• Proactive (or goal-oriented or purposeful)—goal
oriented and able to accomplish goals without prompting
from a user, and reacting to changes in an environment.

• Social (or socially able or communicative)—able to com-
municate both with humans and other agents.

Software agents operate on agent platforms. Agent plat-
form is an execution environment for agents which supplies
the agents with various functionalities characteristic for the
agent paradigm (such as agent intercommunication, agent
autonomy, yellow pages, mobility, etc.).

Agent platforms are deployed horizontally over multiple
hardware devices through containers. On each device at least
one container may be set up. Each container is an instance
of a virtual machine (usually Java VM) and it forms a virtual
agent network node. Containers make agent platform inde-
pendent from underlying operating systems. Mobile agents
are able to migrate from one container to another. Conse-
quently, when containers are deployed on different devices,
mobile agents can migrate between different devices.

Agent platforms can be imagined as agent communities
where agents are managed and are given the means to inter-
act (communicate and exchange services). Many agent com-
munities may coexist at the same time. Depending on the
implementation of the platform, agents may be able to leave
one community (platform) and join another.2

Mobile Agent approach was chosen for the development
of MAlSim because it particularly fits this purpose. Agents
have much in common with malicious programs. Similarly to
worms and viruses, they have the ability of relocating them-
selves from one computer to another. They are also auton-
omous as the worms are. At the same time they operate on
agent platform which forms a type of sandbox facilitating
their control.

3 JADE

MAlSim is dedicated for the JADE (Java Agent DEvelop-
ment Framework) agent platform.

JADE is a fully Java based agent platform which complies
with the FIPA3 specifications. It is provided by means of:

• Software framework which facilitates the implementation
of multi-agent systems through a middleware which sup-
ports agent execution and offers various additional fea-

2 Further information on software agents an interested reader can find
in [6–8,14,15,18,21,28,43].
3 http://www.fipa.org

tures (such as a Yellow Pages service or support for
agents’ mobility).

• Set of graphical tools that supports the debugging and
deployment phases.

JADE is licensed under Lesser General Public License
(LGPL), meaning that users can unlimitedly use both bina-
ries and code of the platform. During over seven years of
its development JADE has become very popular among the
members of agent community and now it is probably the most
often used agent platform. JADE is continuously developed,
improved and maintained, not only by the developers from
the Telecom Italia Lab (Tilab), where it was originated, but
also by contributing JADE community members [5,40].

Further details on the choice of JADE for the development
of MAlSim can be found in [22].

4 MAlSim Components

MAlSim Toolkit provides:

• Multiple (Java) classes of MAlSim agent (extensions of
JADE Agent class).

• Various behavioural patterns implemented as agent
behaviours4 (extensions of JADE Behaviour class).

• Diverse migration/replication patterns implemented as
agent behaviours (extensions of JADE Behaviour
class).

The MAlSim agent class is the basic agent code which
implements the standard agent functionalities related to its
management on the agent platform, its communication skills
and the characteristics related to the nature of simulated
malicious software. This code will be propagated across the
attacked machines.

To render it operative, the code must be extended with
instances of the behaviour classes and the migration/repli-
cation patterns. Depending on the chosen behaviour(s) and
the migration/replication patterns, the instances of the same
agent class will be created on the attacked host, or instances
of another agent class from the toolkit.

The behavioural patterns comprise definitions of agent
behaviours aiming at imitating malicious activities of mal-
ware (such as scanning for vulnerabilities of operating
system, sending and receiving packets, verifying if certain
conditions are met, etc.) but without their harmful influence
on the system. They are implemented in Java as extensions
of the Behaviour class provided by JADE framework.
The patterns include operations such as disabling network

4 In agents terminology the agent’s behaviour is a set of actions
performed in order to achieve the goal. It represents a task that an agent
can perform [3].

123

http://www.fipa.org

68 R. Leszczyna et al.

Listing 1 Java code of MalwareSimAgent1 class used in the template of a zero-day virus.

adapter, enabling a local firewall to operate in all-block mode
or starting a highly processor time consuming task, etc. They
facilitate showing detrimental effects of malware activities
but in contrary to their prototypes they are fully controlled.
They demonstrate, for example, that after malware infection,
it is no longer possible to connect to the host, or that the host’s
performance is affected etc. To support the demonstrative
aspect of experiments also some patterns with audio-visual
effects were developed. For example, to facilitate the obser-
vation of malware diffusion in the network, a sound can be
played by the agent after it arrived to a new container.5

Migration and replication patterns describe the ways in
which MAlSim agent migrates across the attacked hosts.
The patterns implement malware propagation models as well
as user-configured propagation schemas. The latter allow to
define such characteristics as: which subnetworks of the eval-
uated system will be affected, in which order, at what relative
time, etc.

A particular choice of one of MAlSim agent classes,
extended with a chosen behavioural and migration/replica-
tion patterns is called a malware template, i.e. a template
of malicious software. Another words, a malware template
indicates a selection and configuration of Java classes (MAl-
Sim agent, one or more behavioural patterns and one or more
migration/replication patterns) selected from MAlSim Tool-
kit in order to simulate a particular instance of malware.

Malware template’s life-cycle comprises two states:

5 Interesting studies on using sound for network monitoring are
described in [16].

• ‘Defined’ state—when the template is described in
pseudocode.

• ‘Implemented’ state—when the template is actually fully
implemented in Java (i.e. all the indicated MAlSim agent
classes are implemented).

An exemplary malware template in the ‘defined’ state is
presented in Sect. 5. A sample of malware template code
(for a zero-day virus, see Sect. 6 for more details on the
attack) is provided on Listings 1 and 2. There it can be
seen that for the simulation of zero-day virus attack actually
two malware agents are used: MalwareSimAgent1 and
MalwareSimAgent2. MalwareSimAgent1 is a base
agent, which should be launched at the ‘attacker’s side’ JADE
container. The agent creates copies of its ‘children’—the
instances of MalwareSimAgent2—providing them with
the name of the target container from the list of target contain-
ers, which, in the current version of the simulation, is given
explicitly. The creation of the copies is performed according
to a proliferation schema defined in the ProliferateBe-
haviour class. The instances of MalwareSimAgent2
move to the target locations and when there, they indicate
they presence by playing a sound and they simulate the mali-
cious behaviour of disrupting a driver of the network adapter.
This simulation is implemented as launching the adequate
system command for Linux and a Visual Basic script for
Windows. In this way, it is very easy to return to the state
before the experiment, by simply launching again the Visual
Basic Script or running the switching-on Linux command.

123

Simulating malware with MAlSim 69

Listing 2 Java code of MalwareSimAgent2 class used in the template of a zero-day virus.

At the same time, the usage of mobile agents prevents from
any other unpredicted consequences of the simulation, as the
simulated malware is separated from the system by means of
JADE environment and JADE containers.

Currently the repository of malware templates contains
just several malware templates in the ‘implemented’ state,
which are the basic malware implementations for zero-day
viruses and worms. However new malware templates are
planned to be implemented in a foreseeable future. At first
malware templates for most interesting (from the point of
view of the technique used for propagation but also regarding
the payload) representatives of known malware are going to
be defined (such as Yamanner, W32/Mydoom, W32/Blaster).
Large enough repository of such templates will allow to
extract the generic behaviours of malware (file sharing prop-
agation, e-mail propagation, exploits) into separate malware
templates.

MAlSim setup comprises the following phases:

1. An attack scenario is withdrawn from repository. An
attack scenario is a sequence of steps taken during attack.

It describes the whole ‘script’ of an attack, written for all
participants (the attacker, the victims, the third parties).
An exemplary attack scenario is provided in Sect. 6.

2. According to the chosen scenario an appropriate malware
template is selected from the repository and configured.
If none of existing templates fits the attack scenario, a
new MAlSim template developed.

3. Creating a live instance of malware template involves
extending a MAlSim agent with a migration schema
(through adding agent behaviours from the repository)
and a malicious behaviour.

At the current step of the development of MAlSim, the
setup is done manually. In the future studies at introducing
some automation to the setup process will be performed.

The experiments are controlled through the graphical
interface of JADE. Using the interface, the operator can man-
age the whole life cycle of agents. For example he/she can
launch new agents, suspend them or remove. As shown in
Fig. 1 the interface provides the view at the available agent

123

70 R. Leszczyna et al.

Fig. 1 MAlSim Framework takes advantage of JADE GUI for control and observation of experiments

platforms and the containers installed on them. Each
container is installed on another host participating in exper-
iments, so from the point of view of the interface, that con-
tainer represents a host. The graphical console shows which
agents are present on each container. The operator can see
how agents are created, they migrate, or they leave the plat-
form. In this sense the graphical console facilitates observa-
tion of the diffusion of the simulated malware.

JADE, being a distributed agent platform supporting
mobility of agents, provides MAlSim with all means for its
deployment over all hosts participating in the simulation of
malware. The deployment is realised through JADE contain-
ers (see Fig. 2). Java-based JADE is flexibly installable on
various operating systems. During the security evaluation of
a power plant (see Sect. 6) it was successfully deployed over
diverse distributions of Linux (Debian, Ubuntu, CentOS) and
Microsoft Windows.

More technical details of the environment can be found in
[24].

As it was depicted in Sect. 1 malicious software migrate
from one computer to another using network connections
or portable data storage. They infect files (e.g. executables,
word processing documents, etc.) or consist of lightweight
programs that are downloaded from a remote system and exe-
cuted locally with minimal or no user intervention (typically
written in Javascript, VBScript, Java, or ActiveX). MAlSim
on the other hand uses the migration mechanisms embedded
in the agent platform.

In the default configuration (used for the MAlSim imple-
mentation) these mechanisms are realised over Java Remote

Method Invocation protocol on port 1099. This has a negative
impact on the fidelity of the simulation. Thus it is planned to
develop agent behaviours aiming at minimising this differ-
ence. One solution could be for example not to allow MAlSim
agent migrate until a transport channel used by the prototype
malware was opened. As a result, MAlSim agent, even if
‘physically’ moving through the connection on 1099 port,
will behave as relocating through a HTTP or POP3 connec-
tion, etc.

5 Malware Templates

As it was already mentioned in Sect. 4 a composition of a
particular MAlSim agent class with behavioural and migra-
tion/replication patterns constitutes a malware template. The
malware templates aim at reflecting the behaviours of vari-
ous families of malware (worms, viruses, malicious mobile
code, etc.) and various species of malware belonging to the
same family (e.g. macro viruses, metamorphic and polymor-
phic viruses, etc.). Moreover apart of mimicking the well-
known malware (such as Melissa, Code Red, Nimda, SQL
Slammer), they allow simulations of generic behaviours (file
sharing propagation, e-mail propagation) and their non-exis-
tent configurations. In this way a non-existent malware can
be simulated, such as zero-day viruses, to more extensively
evaluate the security of an information system.

During development of malware templates various
information sources are used. To the most popular belong:
[10,27,37].

123

Simulating malware with MAlSim 71

Fig. 2 MAlSim deployment

As it can be seen on the example of the Melissa template
(see below) each template defines:

• Initial event of the malware life cycle (a ‘birth’ of
malware).

• Trigger—the overall conditions to be satisfied to allow
the malware to operate.

• Malicious actions of the simulated malware.

These definitions drive the development of the code of
MAlSim agent classes and agent behaviour classes.

Listing 3 shows the pseudocode of the malware template
for simulation of the virus Melissa. The template was created
based on the descriptions from [10,27,37]. The template is
going to be implemented in the foreseeable future.

6 Case study: employing MAlSim in the security
evaluation of a power plant IT system

MAlSim was applied for the experiments aiming at evalua-
tion of the security of a power plant infrastructure.6

To achieve full control over the experiments and to
prevent detrimental consequences which in case of critical
infrastructures could have a very serious impact on many
stakeholders, a secure isolated environment for attack simu-
lations was created based on one hundred twenty hosts, the
network equipment necessary to interconnect them (which
includes sixteen network switches), as well as SCADA devices
set up over physical hydrologic installation. In this environ-
ment, the information system of the power plant was recon-
structed with very high fidelity. The identical subnetworks

6 An existent, fully operative combined cycle electric power plant was
reconstructed and evaluated during the experiments. Unfortunately, the
contractual regulations for this project require the details of the site to
remain confidential.

were created. All the key workstations of the power plant
were copied in one-to-one relation. It means each of the work-
stations was reflected into one host of the simulation environ-
ment. Only stations of the Intranet were approximated with
a lower number of hosts, but this was without loss of gener-
ality. In the reconstruction, the same network addresses were
used, the same software installed, the same configurations
of firewalls applied etc. More details of the environment and
the reconstructions can be found in [23,24].

In this simulation environment the network setting of the
power plant was reconstructed (mirrored) which comprised
(Fig. 3):

• Process Network, which interconnects diverse
subsystems of the energy production process.

• Field Network, which interconnects controllers and field
devices.

• The corporate network (Intranet).
• Wireless LAN network.
• Demilitarised Zone (DMZ).

The JADE framework was deployed over the hosts
mirroring Process Network and the Intranet. On each of the
hosts a representative JADE container was installed. The
experiments’ control centre associated with JADE main-con-
tainer, was located on the host from the Threat and Attack
Simulator area of the simulation environment. From there,
the simulated attacks were launched, controlled and moni-
tored.

In this setting the simulation of a zero-day virus attack was
performed. A zero-day (or zero-hour) attack is a computer
threat that exposes undisclosed or unpatched computer appli-
cation vulnerabilities. Zero-day attacks take advantage of
computer security holes for which no solution is currently
available. Zero-day exploits are released before the vendor

123

72 R. Leszczyna et al.

Listing 3 Pseudocode of the malware template for simulation of the virus Melissa.

patch is released to the public. A zero-day exploit is usually
unknown to the public and to the product vendor.

An attack scenario was developed and based on this sce-
nario the simulation was performed.

The scenario of the attack is as follows:

A power plant operator working on a PC located in the
power plant’s Intranet browses the Internet and gets
accidentally infected by a virus which has been just
launched in the recent hours. This is a new type of
virus, not just a slight modification of an existing one.
For this reason and because of the fact that the virus is

so recent, it is yet unknown to the antivirus community
(zero-day virus). Its signature is not stored in any of
antivirus databases.
The virus infects programs on the user’s PC and,
taking advantage of the fact that unlimited traffic
between the hosts in the Intranet is allowed, it infects
also the remaining hosts of the Intranet. Later on the
user, unconscious of the fact that his/her PC is infected
by the virus, opens the VPN connection to a host in
Process Control network. Now the virus has a free pas-
sageway to the critical subnetwork of the power plant
network. It moves through it and starts infecting the

123

Simulating malware with MAlSim 73

Fig. 3 Simulation environment

computers in the Process Control network. Simulta-
neously, the adverse effects of the virus begin to be
apparent. The computers become less effective, the
applications raise errors and stop functioning, and the
network connections are lost.

The general aim of this attack is to infect as many
computers in the Internet as possible and to cause their mal-
functioning. The attack is not particularly oriented against
the power plant system, however when reaching the network
of the power plant, the virus can reach the Process Control
Network and Intranet subsystems.

In the simulation, the MAlSim agent had been launched
at main-container and after that it was creating its copies
gradually on the hosts in the Intranet and progressively in
Process Network, starting from SCADA Server. After this
propagation wave, the copies of MAlSim which were created
at all the hosts through which it passed, were deactivating the
hosts’ network cards, making any network-related operation
impossible.

As a result, the following services were affected:

• Power Generation Control—controlling and monitoring
of the power production process. The viral infection and
the due loss of connection with the direct controllers of
the power generation devices, made impossible control-
ling of the power production process from Process Net-
work. The operators were forced to use older, low level
control infrastructure.

• Power Generation Data Acquisition—providing
information necessary for the power plant supervision
and for production planning. In the time between the virus
outbreak and the system recovery, the data could not be
collected. The operators were forced to use the alternative
low level process control and monitoring infrastructure
and to make production plans in non automated way. The
information generated by the service is also delivered to

the following cooperators, for which the interruption in
the delivery of the data can become alarming:

– High voltage power transmission and dispatching
company, which transports the energy over the ter-
ritory of the country.

– End-user power distribution companies, which deliver
the energy from the cross-country transmission sys-
tem to the final user.

– A government organisation which manages the elec-
tric market of the country.

• Anomaly Diagnosis— monitoring and analysis of
vibrations of power production devices (primarily – the
gas turbine), in order to predict or early detect faults or
malfunctions. This service allows, for example, to pre-
dict faster utilisation of a device, allowing to make a
decision of its replacement much (at least several weeks)
in advance. Since the full system recovery of Process
Network (based on restoring the last safe system state
from backup copies) should not take more than three days
(at maximum!), the loss of the anomaly diagnosis related
information in the time, shall not result in any serious
consequences.

• Gas Exhaust Management—providing information on
the quality of gas emissions to the atmosphere, to the
interested third parties. Provision of this service is
imposed by law. Without the service, a plant cannot obtain
the authorisation for energy production or the continua-
tion of the production. Severity of the threat in regard to
this service depends on the particular regulations of the
country. It means, how the regulations refer to the lack of
data for, at maximum, three days period (maximal sys-
tem recovery time, see the previous bullet). In general
restitution of the data with the estimations based on the
proceeding and the following periods, and the production
plan for the period of the interruption of data delivery,
should suffice.

• Remote Maintenance—such as software patching,
updating from Intranet and the Internet (!) by an au-
thorised company. The impact of the virus in relation to
the service is obvious – the software maintainers have
to come to the site anyway, to remove the effects of the
infection.

Summarising, the effects of this particular virus infection,
though critical, were not dramatic. The power plant could
continue its operation normally, from the point of view of
power production process. The damages were mostly related
to the interruption of data delivery, and to the necessity of
performing less automated control over the production pro-
cess.

This is because the payload of the simulated virus aimed
only at deactivating network adapters of the infected

123

74 R. Leszczyna et al.

computers, causing ‘only’ the loss of connectivity. However,
if another, more malicious version of the virus was developed,
which, for example, would have been able to interfere with
the protocol (such as MODBUS or DNP3 [19,30]) through
which actual commands are sent to the Field actuators, then
it could cause the anomalies in power production process.

Fortunately, the probability of the occurrence of such event
is very low. To develop such a dedicated virus, an advanced
level of the recognition of the power plant infrastructure (for
example which protocols are used) is required, and good
knowledge of SCADA protocols. Even more than these, it is
difficult to develop a completely new virus, which will spread
quickly enough to overpass malware detection engines.

Finally, it must be noted, that it is very difficult to prevent
from the zero-day virus attack, as its strength is based on its
urgency and unexpectedness. Most of antimalware software,
being signature based, will be not prepared for the detection
of this attack, and will let the virus spread over the networks.
A possible solution for protection from this type of attacks
could be to use anomaly detection based malware detection
engines.

Further details about the MAlSim simulations performed
in order to evaluate security of critical infrastructures can be
found in [23,24].

7 Conclusions

The paper presented MAlSim—Mobile Agent Malware
Simulator, developed to address the demand for malware sim-
ulation tools to be applied for security evaluations of infor-
mation systems.

The framework is based on the technology of mobile
agents, which appears to be particularly suitable for this
application due to numerous similarities between agents and
malicious programs (such as mobility, autonomy, etc.) and
because of the features of agent platforms which facilitate
performance of experiments.

MAlSim Toolkit provides multiple classes of MAlSim
agent and diverse behavioural and migration/replication pat-
terns, to be used for implementation of various malware.
These components, taken together, form malware templates.
An exemplar malware template for the famous virus Melissa
was presented in Sect. 5.

At its current state, the MAlSim’s repository of malware
templates contains just basic malware implementations for
zero-day viruses and worms, which were applied during the
studies on computer security of a power plant. However, the
repository will be successively extended with new agent clas-
ses and behaviours.

Another future task is to improve the fidelity of simu-
lation by developing agent behaviours aiming at reducing
the impact of the usage of default JADE communication

mechanisms realised over Java Remote Method Invocation
protocol.

The framework was successfully applied to the studies
on security of a power plant [23,24], proving its operability,
applicability and usefulness. The experiments showed the
impact of a potential zero-day virus infection on the critical
infrastructure and led to other important conclusions [23,24].

References

1. Anderson, R.: Security Engineering: A Guide to Building Depend-
able Distributed Systems. Wiley, New York (2001)

2. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: Jade—a white
paper. Tilab (2003a, September)

3. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: Jade program-
mers guide. Tilab (2003b, February)

4. Bishop, M.: Computer Security: Art and Science, 1st edn. Addison
Wesley Professional, Reading, MA, USA (2003)

5. Caire, G.: JADE tutorial: application-defined content languages
and ontologies. Tilab (2002, June)

6. Carzaniga, A., Picco, G.P., Vigna, G.: Designing distributed appli-
cations with a mobile code paradigm. In: Proceedings of the
19th International Conference on Software Engineering. Boston,
MA, USA. http://citeseer.ist.psu.edu/carzaniga97designing.html
(1997)

7. Chess, D., Grosof, B., Harrison, C., Levine, D., Parris, C.,
Tsudik, G.: Itinerant agents for mobile computing. IEEE Per-
sonal Commun. 2(5), 34–49. http://citeseer.ist.psu.edu/article/
chess95itinerant.html (1995)

8. Chess, D., Harrison, C., Kershenbaum, A.: Mobile agents: Are
they a good idea? (RC 19887 (December 21, 1994 - Declassified
March 16, 1995)). IBM Research, Yorktown Heights, New York.
http://citeseer.ist.psu.edu/chess95mobile.html (1994)

9. Ellis, D.: Worm anatomy and model. In: Worm ’03 Proceedings
of the 2003 ACM workshop on rapid malcode, pp. 42–50. ACM,
New York, NY, USA (2003)

10. F-Secure. F-Secure virus description database. (http://www.
f-secure.com/v-descs/ (last access: January 18, 2008))

11. Faistenhammer, T., Klöck, M., Klotz, K., Krüger, T.,
Reinisch, P., Wagner, J.: October. Virlab 2.1. Internet. http://
kklotz.de/html/virlab.html (last access: October 29, 2007))
(1993)

12. Filiol, É.: Computer Viruses: from Theory to Applications.
Springer, France (2005)

13. Filiol, É., Franc, E., Gubbioli, A., Moquet, B., Roblot, G.: Com-
binatorial optimisation of worm propagation on an unknown net-
work. Int. J. Comput. Sci. 2(2), 124 – 131. http://vx.netlux.org
(last access: March 7, 2008) (2007)

14. Franklin, S., Graesser, A.: Is it an agent, or just a program?: a
taxonomy for autonomous agents. Intelligent agents III. agent the-
ories, architectures and languages (ATAL’96), vol. 1193. Springer,
Berlin. http://citeseer.ist.psu.edu/franklin96is.html (1996)

15. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobil-
ity. IEEE Trans. Software Eng. 24(5), 342–361. http://citeseer.ist.
psu.edu/fuggetta98understanding.html (1998)

16. Gilfix, M., Couch, A.L.: Peep (the network auralizer): Monitoring
your network with sound. In: Lisa ’00: Proceedings of the 14th
USENIX Conference on System Administration, pp. 109–118.
USENIX Association, Berkeley, CA, USA (2000)

17. Gordon, S.: Are good virus simulators still a bad idea? Network
Security 1996(9), 7–13 (1996)

123

http://citeseer.ist.psu.edu/carzaniga97designing.html
http://citeseer.ist.psu.edu/article/chess95itinerant.html
http://citeseer.ist.psu.edu/article/chess95itinerant.html
http://citeseer.ist.psu.edu/chess95mobile.html
http://www.f-secure.com/v-descs/
http://www.f-secure.com/v-descs/
http://kklotz.de/html/virlab.html
http://kklotz.de/html/virlab.html
http://vx.netlux.org
http://citeseer.ist.psu.edu/franklin96is.html
http://citeseer.ist.psu.edu/fuggetta98understanding.html
http://citeseer.ist.psu.edu/fuggetta98understanding.html

Simulating malware with MAlSim 75

18. Gray, R.S., Kotz, D., Cybenko, G., Rus, D.: Mobile agents:
motivations and state-of-the-art systems (TR2000-365). Dart-
mouth College, Hanover, NH. http://citeseer.ist.psu.edu/
gray00mobile.html (2000)

19. Group, D.U.: A forum for supporters of the distributed network
protocol. Internet. http://www.dnp.org/ (last access: March 14,
2008) (2008, December)

20. Hirst, J.: Virus simulation suite. Internet (1990)
21. Jansen, W., Karygiannis, T.: NIST special publication 800-

19-mobile agent security. http://citeseer.ist.psu.edu/jansen00nist.
html (2000)

22. Leszczyna, R.: Evaluation of agent platforms Ispra, Italy: Euro-
pean Commission, Joint Research Centre, Institute for the Protec-
tion and security of the Citizen (2004, June)

23. Leszczyna, R., Fovino, I.N., Masera, M.: Malsim—mobile agent
malware simulator. In: Proceedings of First International Confer-
ence on Simulation Tools and Techniques for Communications,
Networks and Systems (SIMUTools 2008). Association for Com-
puting Machinery (ACM) Press, New York (2008a, March)

24. Leszczyna, R., Fovino, I.N., Masera, M.: Security evaluation of IT
systems underlying critical networked infrastructures. (Accepted
for First International IEEE Conference on Information Technol-
ogy (IT 2008), Gdansk, Poland, 18–21 May 2008) (2008b)

25. Liljenstam, M., Nicol, D.M., Berk, V.H., Gray, R.S.: Simulating
realistic network worm traffic for worm warning system design
and testing. In: Worm ’03: Proceedings of the 2003 ACM work-
shop on rapid malcode, pp. 24–33 (2003)

26. Liljenstam, M., Yuan, Y., Premore, B., Nicol, D.: A mixed abstrac-
tion level simulation model of large-scale internet worm infesta-
tions. In: Mascots ’02: Proceedings of the 10th IEEE International
Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems (mascots’02), p. 109. IEEE
Computer Society, Washington, DC, USA (2002)

27. McAfee. McAfee virus information. Website. (http://uk.mcafee.
com/virusInfo/ (last access: January 18, 2008))

28. Milojicic, D.S.: Trend wars: Mobile agent applications. IEEE
Concurrency 7(3), 80-90. http://dlib.computer.org/pd/books/
pd1999/pdf/p3080.pdf (1999)

29. Mischel Internet Security. Trojan simulator. Internet. http://www.
misec.net/trojansimulator/ (last access: October 29, 2007) (2003)

30. Modbus-IDA. MODBUS application protocol specification v1.1b.
http://www.modbus.org/specs.php (last access: March 14, 2008)
(2006)

31. Moore, D., Shannon, C., Voelker, G.M., Savage, S.: Internet quar-
antine: Requirements for containing self-propagating code. In: In-
focom 2003. Twenty-Second Annual Joint Conference of the Ieee
Computer and Communications Societies, vol. 3, pp. 1901–1910
(2003, April)

32. Perumalla, K.S., Sundaragopalan, S.: High-fidelity modeling of
computer network worms. acsac 00, pp. 126–135 (2004)

33. Rosenthal Engineering. Rosenthal virus simulator. Internet (1997)
34. SecurityFocus. SecurityFocus vulnerability database. http://www.

securityfocus.com/bid (last access: January 17, 2008)
35. Sharif, M.I., Riley, G.F., Lee, W.: Comparative study between ana-

lytical models and packet-level worm simulations. In: Pads ’05:
Proceedings of the 19th workshop on principles of advanced and
distributed simulation, pp. 88–98. IEEE Computer Society,
Washington, DC, USA (2005)

36. Skoudis, E., Zeltser, L.: Malware: Fighting malicious code.
Prentice Hall Professional Technical Reference, Upper Saddle
River, New Jersey, USA (2003)

37. Symantec. Symantec security response. (http://www.symantec.
com/security_response/ (last access: January 18, 2008)

38. Symantec Research Labs 2005. Symantec worm simulator. Inter-
net

39. Szor, P.: The art of computer virus research and defense, 1st edn.
Addison Wesley Professional, Reading, MA, USA (2005)

40. Telecom Italia Lab. Java Agent DEvelopment Framework. (http://
jade.tilab.com/)

41. Wagner, A., Dübendorfer, T., Plattner, B., Hiestand, R.:
Experiences with worm propagation simulations. In: Worm ’03:
Proceedings of the 2003 ACM workshop on rapid malcode,
pp. 34–41. ACM, New York, NY, USA (2003)

42. Wei, S., Mirkovic, J., Swany, M.: Distributed worm simulation
with a realistic internet model. In: Pads ’05: Proceedings of the
19th Workshop on Principles of Advanced and Distributed Simu-
lation, pp. 71–79. IEEE Computer Society, Washington, DC, USA
(2005)

43. Yee, B.S.: A sanctuary for mobile agents. In: Proceed-
ings of the DARPA Workshop on Foundations for Secure
Mobile Code. Monterey, USA. http://citeseer.ist.psu.edu/article/
yee97sanctuary.html (last access: May 08, 2006) (1997, March)

44. Zou, C.C., Gong, W., Towsley, D.: Worm propagation model-
ing and analysis under dynamic quarantine defense. In: Worm
’03: Proceedings of the 2003 ACM Workshop on Rapid Malcode,
pp. 51–60. ACM, New York, NY, USA (2003)

123

http://citeseer.ist.psu.edu/gray00mobile.html
http://citeseer.ist.psu.edu/gray00mobile.html
http://www.dnp.org/
http://citeseer.ist.psu.edu/jansen00nist.html
http://citeseer.ist.psu.edu/jansen00nist.html
http://uk.mcafee.com/virusInfo/
http://uk.mcafee.com/virusInfo/
http://dlib.computer.org/pd/books/pd1999/pdf/p3080.pdf
http://dlib.computer.org/pd/books/pd1999/pdf/p3080.pdf
http://www.misec.net/trojansimulator/
http://www.misec.net/trojansimulator/
http://www.modbus.org/specs.php
http://www.securityfocus.com/bid
http://www.securityfocus.com/bid
http://www.symantec.com/security_response/
http://www.symantec.com/security_response/
http://jade.tilab.com/
http://jade.tilab.com/
http://citeseer.ist.psu.edu/article/yee97sanctuary.html
http://citeseer.ist.psu.edu/article/yee97sanctuary.html

	Simulating malware with MAlSim
	Abstract
	1 Introduction
	2 Mobile agents
	3 JADE
	4 MAlSim Components
	5 Malware Templates
	6 Case study: employing MAlSim in the security evaluation of a power plant IT system
	7 Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

